Odiz Enclosed Horizontal Lathe Guard
Contact us
Elevate safety and visibility at your lathe workstation with our fully custom, interlocked polycarbonate safety guard. Lightweight aluminum shields, robust steel legs, and smooth telescopic slides combine for effortless operation—while the bright yellow powder-coated finish ensures maximum visibility. Engineered for any height or width up to 117″, this on-site assembly guard protects operators without obstructing overhead crane handling or lathe access.
To request more information about this product or service, please complete the form below. You can also chat live with one of our specialists via the widget in the bottom-right corner of your screen or call us at (574) 318-4333.
Protect your team and maintain full visibility of every turning operation with our premium Lathe Safety Guard System. Designed for maximum flexibility and engineered to the highest safety standards, this fully custom guard integrates seamlessly with your existing equipment:
Key Benefits & Features
-
Unobstructed Overhead Crane Access
Strategically designed to allow overhead crane handling of workpieces without interference. -
Full Lathe Accessibility
When swung open, the guard stays clear of the operator’s workspace—no more wrestling with panels to reach your controls or tooling. -
Continuous Workpiece Monitoring
Durable polycarbonate front panels provide crystal-clear visibility, so you can watch every cut without lifting the guard. -
Interlocked for Safety
Built-in safety interlock ensures the lathe cannot run when the guard is open, preventing accidental contact.
Premium Construction
-
Lightweight Aluminum Shields
Corrosion-resistant and easy to handle, our aluminum panels reduce strain during installation and maintenance. -
Heavy-Duty Steel Legs
Solid steel framework provides unwavering stability, even under heavy vibration. -
High-Visibility Powder Coat
Finished in safety yellow for instant recognition and long-lasting durability. -
Smooth Telescopic Slides & Rails
Engineered for whisper-quiet, effortless opening and closing, even after years of use. -
Precision Gap Clearance
A 0.2″ minimum clearance gap between top and front shields ensures optimal fit without binding.
Custom Fit & On-Site Assembly
-
Tailor-made to your exact specs: choose any height or width to suit your workspace.
-
Maximum closed length: 117″ (Dimension D) (For larger sizes, please contact us for custom solution)
-
Delivered as subassemblies for straightforward on-site installation—no heavy lifts or specialty tools required.
Whether you’re retrofitting an existing lathe or specifying a new installation, our Lathe Safety Guard System delivers unbeatable protection, effortless operation, and clear sightlines—because safety and productivity should always go hand in hand.
1910.212 - General requirements for all machines.
OSHA 1910.212 — General Requirements for All Machines
OSHA 29 CFR 1910.212 is the core machine guarding standard that applies to nearly all machinery in general industry.
It requires employers to provide guards and protective devices to shield workers from points of operation, rotating parts, in-running nip points, flying chips, sparks, and other hazards.
As a “catch-all” standard, OSHA 1910.212 is often cited when no specific machine regulation exists, making it one of the most frequently enforced provisions in Subpart O.
Key Guarding Requirements
- Point of Operation: Machines must be guarded so operators are not exposed to the point where the work is performed.
- Rotating & Moving Parts: Guards must cover exposed belts, pulleys, gears, shafts, and flywheels to prevent accidental contact.
- In-Running Nip Points: Hazards created where two parts rotate toward each other or where one part moves past a stationary object must be guarded.
- Flying Chips & Sparks: Guards or shields must contain debris, sparks, and fragments generated during machine operation.
- Anchoring: Machines designed for fixed location use must be securely anchored to prevent movement or tipping.
Examples of Machines Covered
Because OSHA 1910.212 is a broad standard, it applies to a wide range of equipment including drill presses, lathes, milling machines, conveyors, punch presses, saws, and grinders.
If a machine has moving parts that could injure a worker, 1910.212 requires guarding.
Common Violations
- Missing point-of-operation guards on presses or saws.
- Exposed belts, pulleys, or rotating shafts without guarding.
- Improperly adjusted or removed guards during production.
- Lack of anchoring on floor-mounted equipment.
- Failure to contain sparks or flying material in grinding, cutting, or drilling operations.
Why OSHA 1910.212 Matters
Machine guarding violations are consistently among OSHA’s top cited standards.
Without proper guards, workers face severe risks of crushed fingers, amputations, lacerations, and eye injuries.
Compliance with OSHA 1910.212 helps facilities protect employees, avoid costly citations, and establish safer production environments.
Relation to Other Standards
OSHA 1910.212 is a general requirement that works in tandem with OSHA 1910.215 (Abrasive Wheel Machinery)
and machine-specific rules under Subpart O. It also aligns with ANSI B11 machine safety standards,
which provide technical safeguarding criteria.
Compliance Checklist
- Install guards at the point of operation on all applicable machines.
- Cover all rotating parts, belts, pulleys, gears, and shafts.
- Guard in-running nip points created by rollers, belts, or chains.
- Provide shields for flying chips, sparks, or debris.
- Anchor floor-mounted machines to prevent shifting.
- Train employees to use machines only with guards in place.
Internal Linking Opportunities
- Cross-link to Lockout/Tagout (OSHA 1910.147) for energy control.
- Link to Abrasive Wheel Machinery (OSHA 1910.215) for grinder rules.
- Connect to ANSI B11 for machine safeguarding performance standards.
- Promote relevant machine guarding products, light curtains, and safety devices.
FAQ
What machines does OSHA 1910.212 apply to?
It applies to virtually all machines in general industry that expose workers to hazards such as moving parts, points of operation, nip points, or flying debris.
Is OSHA 1910.212 machine-specific?
No. It is a general machine guarding standard. When a machine does not have its own specific OSHA rule, 1910.212 is applied.
What are in-running nip points?
They are pinch points created when two rotating parts move toward each other or when one rotating part moves against a fixed surface. These must be guarded to prevent entrapment injuries.
1910.212(a) - Machine guarding
OSHA 1910.212(a) — General Machine Guarding Requirements
OSHA 29 CFR 1910.212(a) defines the core safety principles for machine guarding in general industry.
It requires employers to protect workers from mechanical hazards created by points of operation, rotating components, in-running nip points, and flying chips or sparks.
This paragraph serves as the primary enforcement reference for machinery that does not have its own specific OSHA standard.
Scope and Purpose
The goal of 1910.212(a) is to prevent contact injuries, entanglement, crushing, and amputation by ensuring all hazardous machine motions are either guarded or controlled.
It applies to virtually all machinery used in manufacturing, maintenance, fabrication, and processing operations.
Key Guarding Principles
- Comprehensive Protection: Guards must cover any moving part or area that could cause injury through contact or ejection of material.
- Design Flexibility: Employers may choose fixed, adjustable, or interlocked guards, provided they effectively prevent worker exposure.
- Performance Standard: The rule is performance-based rather than prescriptive—meaning the employer must demonstrate that the guarding method eliminates or controls the hazard.
- Continuity of Protection: Guards must remain in place and secure during operation and be adjusted only when the machine is off and locked out.
- Applicability: This paragraph acts as a “catch-all” requirement whenever a machine presents a hazard not addressed by another OSHA provision.
Examples of Covered Hazards
Machines governed by 1910.212(a) include drill presses, milling machines, conveyors, polishing lathes, grinders, and mechanical cutters.
Hazards may include rotating shafts, reciprocating arms, cutting surfaces, or points where material is inserted or removed.
Compliance Practices
- Install guards that physically prevent access to moving parts.
- Inspect guards routinely for secure attachment and effectiveness.
- Ensure that guard openings prevent any part of the body from reaching the danger zone.
- Prohibit operation when guards are missing or removed.
- Train employees on safe operation, inspection, and maintenance of guarded machines.
Why OSHA 1910.212(a) Is Important
Most serious machinery accidents occur because guards are missing, removed, or inadequate.
Section (a) establishes the baseline requirements that form the foundation of all machine safeguarding programs.
Compliance not only prevents injuries and amputations but also ensures alignment with national consensus standards such as ANSI B11 and ISO 12100.
FAQ
What types of machines are covered under 1910.212(a)?
Virtually all machines in general industry that expose workers to moving parts, points of operation, or flying debris fall under this paragraph.
Can electronic or presence-sensing devices satisfy 1910.212(a)?
Yes. Electronic safety devices may be used if they prevent employee exposure to hazardous motion as effectively as a physical guard.
Is 1910.212(a) enforceable even if a specific machine standard exists?
It applies whenever a machine hazard is not completely addressed by a more specific OSHA regulation. Inspectors often cite both when gaps exist.
1910.212(a)(1) - Types of guarding
OSHA 1910.212(a)(1) — General Duty to Guard Machines
OSHA 29 CFR 1910.212(a)(1) establishes the primary obligation to guard machinery in general industry.
It requires employers to implement one or more methods of guarding that protect both the operator and nearby employees from hazards created by points of operation, rotating parts, flying chips, sparks, or any other dangerous mechanical motions.
Scope and Intent
This paragraph serves as the foundation of all machine guarding enforcement.
It mandates that every machine presenting a mechanical hazard must be safeguarded through a combination of physical barriers or engineered safety devices.
The employer may choose the guarding method, but it must completely prevent employee exposure to the moving part or hazard zone during normal operation.
Acceptable Guarding Methods
- Fixed guards: Rigid barriers that prevent access to hazardous areas.
- Interlocked guards: Guards that automatically shut off or disengage the machine when opened or removed.
- Adjustable guards: Barriers that can be positioned for different operations but remain securely in place during use.
- Self-adjusting guards: Guards that move automatically into position as the operator works, covering the danger area as material is fed.
- Electronic safeguarding devices: Light curtains, pressure-sensitive mats, and presence sensors that prevent access to moving parts.
Key Compliance Requirements
- Guarding must protect both operators and nearby personnel.
- Guards must be securely attached and durable enough to resist normal operation and vibration.
- Openings in guards must be small enough to prevent accidental contact with moving parts.
- Guards must not introduce new hazards such as sharp edges, pinch points, or visibility obstruction.
- All guards must be kept in place and functional when machines are operating.
Common Violations
- Machines operating without guards over exposed belts, pulleys, gears, or shafts.
- Removed or bypassed barrier guards during production or maintenance.
- Improper guard materials or openings that allow hand or finger access to moving parts.
- Lack of guarding for nearby employees who may be struck by flying material or sparks.
Practical Compliance Tips
- Conduct a full hazard assessment for all equipment to identify points of operation and motion hazards.
- Install fixed guards wherever possible; use interlocked or adjustable guards only when process requirements demand it.
- Include guarding checks in your preventive maintenance program.
- Train operators to recognize unsafe conditions and never remove or modify guards.
Why OSHA 1910.212(a)(1) Is Important
This paragraph represents OSHA’s general duty clause for machinery safety.
Most machine-related injuries occur when guards are removed or missing, and OSHA 1910.212(a)(1) gives inspectors the authority to cite any unguarded moving part that poses a risk.
Compliance ensures that workers remain protected from crushing, entanglement, amputation, and impact injuries.
FAQ
What types of hazards must be guarded under 1910.212(a)(1)?
All hazards created by points of operation, rotating parts, nip points, or ejected materials must be guarded or otherwise controlled.
Can presence-sensing devices replace physical guards?
Yes, when properly installed and tested, electronic devices such as light curtains can serve as equivalent safeguards if they prevent operator exposure to motion hazards.
Is 1910.212(a)(1) only for operators?
No. Guards must protect both operators and nearby employees who could be injured by machine movement or flying debris.
1910.212(a)(2) – General Requirements for Machine Guards
OSHA 1910.212(a)(2) — General Requirements for Machine Guards
OSHA 29 CFR 1910.212(a)(2) establishes the design and construction standards for machine guards.
This provision requires that guards be securely fastened to the machine and designed to protect operators and nearby employees from injury caused by moving parts, flying debris, or accidental contact.
The intent is to ensure that guarding not only provides protection but also does not create new hazards in the process.
Key Guard Design Requirements
- Secure Attachment: Guards must be firmly attached to the machine. If fastening directly to the machine is not possible, guards must be securely mounted elsewhere to provide equal protection.
- Structural Integrity: Guards must be made of materials strong enough to resist impact, vibration, and normal wear during operation.
- No New Hazards: Guards must not introduce additional risks such as pinch points, sharp edges, or visibility obstruction.
- Durability: Guard materials must withstand operational stresses and environmental factors like heat, coolant, or debris.
- Accessibility: Guards should allow safe maintenance, lubrication, and adjustments without requiring complete removal when possible.
Performance Intent
The focus of 1910.212(a)(2) is performance-based guarding design.
OSHA does not prescribe specific guard materials or thicknesses; instead, the guard must perform effectively under real-world conditions.
Employers have the flexibility to design guards suited to their machines—as long as the guarding prevents contact and remains in place during operation.
Examples of Guard Types Covered
- Fixed guards enclosing belts, pulleys, gears, and rotating shafts.
- Interlocked guards that shut off power when opened or removed.
- Adjustable guards for variable-sized stock or cutting operations.
- Self-adjusting guards that move automatically with the workpiece.
Best Practices for Compliance
- Inspect guards regularly for looseness, cracks, or corrosion.
- Use guard materials that match the operational environment (e.g., metal for high-impact areas, polycarbonate for visibility).
- Train employees to recognize damaged or missing guards and to report deficiencies immediately.
- Ensure all guards are reinstalled and secured after maintenance or adjustments.
Common Violations
- Guards loosely attached or easily removable during operation.
- Improvised guards made from inadequate materials such as thin sheet metal or plastic covers.
- Guards with sharp edges or openings large enough to allow finger or hand access.
- Removed or bypassed guards not replaced before restarting the machine.
Why OSHA 1910.212(a)(2) Is Important
Even when a guard is present, poor design or weak construction can fail to protect workers.
OSHA 1910.212(a)(2) ensures that guards are engineered and maintained to perform effectively throughout a machine’s life cycle.
Properly designed guards prevent crushing, amputation, and laceration injuries while maintaining usability and productivity.
FAQ
What materials are acceptable for guards under 1910.212(a)(2)?
OSHA allows any material—metal, mesh, polycarbonate, or composite—provided it withstands normal use and impact and prevents access to danger zones.
Can a guard be removable?
Yes, guards may be removable for maintenance, but they must be securely fastened during operation and replaced immediately after servicing.
Does OSHA specify guard thickness or type?
No. OSHA 1910.212(a)(2) is performance-based. The employer must ensure that the guard effectively prevents exposure and remains securely attached.
1910.212(a)(3) – Point of Operation Guarding
OSHA 1910.212(a)(3) — Point of Operation Guarding
OSHA 29 CFR 1910.212(a)(3) sets forth the point of operation guarding requirements for machinery used in general industry.
The “point of operation” is the area on a machine where work is performed—such as cutting, shaping, boring, forming, or assembling a part.
This section requires that each machine have a guard or safeguarding device that prevents the operator from having any part of the body in the danger zone during operation.
Purpose and Scope
The purpose of 1910.212(a)(3) is to eliminate exposure to moving tools or dies that can cause crushing, amputation, laceration, or puncture injuries.
It applies to all machines with a point of operation hazard, regardless of size or industry.
Typical examples include presses, saws, milling machines, lathes, shears, and drills.
Key Requirements
- Every machine must be equipped with a guard that prevents the operator from reaching into the danger zone.
- Guards must be designed and constructed to provide maximum protection while allowing the machine to be operated safely and efficiently.
- Special hand tools may be used to handle materials when guarding at the point of operation is not practical.
- Guards must be securely fastened, maintained in place, and not easily removed or bypassed during operation.
- Safeguarding devices such as light curtains, presence-sensing devices, or two-hand controls may be used if they provide equivalent protection.
Examples of Point of Operation Hazards
- Cutting blades or rotating cutters that can amputate or lacerate fingers.
- Press dies or molds that can crush hands or fingers during operation.
- Drill bits, boring tools, or milling heads that can pierce or entangle body parts.
- Shearing or punching points that can sever material—and body parts—with the same force.
Acceptable Guarding Methods
- Fixed barrier guards enclosing the point of operation.
- Interlocked guards that stop machine motion when opened or removed.
- Adjustable or self-adjusting guards that move automatically to block access as material is fed.
- Two-hand controls requiring both hands to activate the cycle, keeping them out of danger.
- Electronic presence-sensing devices such as light curtains or safety mats that halt motion when triggered.
Common Violations
- Operating a machine with missing or disabled point of operation guards.
- Using hand-feeding where fixed or adjustable guards should be installed.
- Removing guards to increase production speed.
- Failure to provide safeguarding when machine design allows operator access to hazardous movement.
Compliance Tips
- Identify all machine points of operation and assess potential contact hazards.
- Install fixed guards where feasible; use engineered safety devices when full enclosure is not possible.
- Inspect all guards before each shift and re-secure after adjustments or maintenance.
- Train operators to recognize guarding deficiencies and to report missing or damaged safety devices immediately.
Why OSHA 1910.212(a)(3) Is Important
Point of operation injuries are among the most severe and preventable workplace incidents.
By enforcing 1910.212(a)(3), OSHA ensures that all machines have reliable guarding or safety devices that keep operators’ hands, fingers, and bodies outside the danger zone during work.
This rule remains one of the most frequently cited machine safety violations nationwide.
FAQ
What is considered the “point of operation” under 1910.212(a)(3)?
It is the location on a machine where work is actually performed on the material—such as cutting, shaping, forming, or drilling.
Can a hand tool substitute for a guard?
Only when physical guarding is not practical. Even then, special hand tools must be designed to keep hands a safe distance from the danger zone.
Do presence-sensing devices meet OSHA’s requirements?
Yes, if they provide equal or greater protection than a physical barrier and prevent any part of the body from entering the hazard zone during operation.
1910.212(a)(3)(i) – Guard Construction and Safety Design
OSHA 1910.212(a)(3)(i) — Guard Construction and Safety Design
OSHA 29 CFR 1910.212(a)(3)(i) outlines the design and performance requirements for point of operation guards.
This provision mandates that guards be designed and constructed so that no part of the operator’s body can enter the danger zone while the machine is in use.
It ensures guards are not merely present, but effective in eliminating exposure to mechanical hazards.
Purpose and Intent
The purpose of this section is to establish functional performance criteria for machine guards, rather than prescribing specific materials or configurations.
The employer has flexibility in choosing a guarding method, but the chosen system must physically prevent entry into the danger zone during operation and must withstand normal working conditions.
Key Guard Design Requirements
- Complete Coverage: The guard must fully enclose or block access to the hazard area where the operation takes place.
- Strength and Rigidity: Guards must be strong enough to resist mechanical stress, vibration, and accidental impact without failure or displacement.
- Visibility: Guards should allow clear observation of the work area when necessary, using materials such as mesh or transparent panels.
- Secure Installation: Guards must be firmly attached so they cannot be easily removed, loosened, or bypassed during operation.
- Usability: The guard must allow normal machine operation, feeding, and maintenance without creating additional hazards.
Examples of Guard Types Meeting 1910.212(a)(3)(i)
- Fixed steel enclosures surrounding the cutting or forming area.
- Interlocked access doors that stop the machine when opened.
- Transparent polycarbonate guards providing visibility and protection.
- Barrier guards with restricted openings preventing hand or arm entry.
Common Compliance Errors
- Using lightweight or flexible materials that can deform and allow contact.
- Guards not secured tightly to the machine or easily removed without tools.
- Guard openings large enough to allow finger or hand access to the danger zone.
- Guards that obstruct visibility or require removal for normal operation.
Best Practices
- Design guards that exceed minimum strength requirements and resist bending or vibration.
- Test guard designs under real operating conditions to ensure reliability and protection.
- Use standardized opening-size tables to determine acceptable distances between guards and hazards based on reach limitations.
- Document guard inspection results and repair or replace any that show wear, damage, or looseness.
- Train operators and maintenance staff on safe use and adjustment procedures for all guarding systems.
Why OSHA 1910.212(a)(3)(i) Is Important
Many guarding failures occur not because guards are absent, but because they are poorly designed or improperly installed.
OSHA 1910.212(a)(3)(i) ensures that guarding methods perform their intended function—keeping the operator’s body completely outside the danger zone while allowing safe, productive operation.
Proper guard design is the first line of defense against amputations, lacerations, and entanglement injuries.
FAQ
What does “constructed so that no part of the operator’s body can enter the danger zone” mean?
It means the guard must be solid or restrictive enough to physically prevent the operator from reaching into the hazard area while the machine is in motion.
Can see-through materials like plastic or polycarbonate be used?
Yes. Transparent guards are acceptable if they meet strength requirements and provide the same level of protection as opaque materials.
Is there a required guard thickness or material type?
No. OSHA does not specify materials or dimensions. The guard must perform effectively and remain in place under all normal conditions of operation.
1910.212(a)(3)(iii) – Guard Design for Operator Safety
OSHA 1910.212(a)(3)(iii) — Guard Design for Operator Safety
OSHA 29 CFR 1910.212(a)(3)(iii) establishes the performance criteria for guard design and construction.
It requires that every machine guard be designed, built, and installed so that it effectively protects the operator from injury during machine operation.
This provision emphasizes that guard design must be functional, durable, and capable of providing full protection throughout the equipment’s use.
Purpose and Intent
The intent of 1910.212(a)(3)(iii) is to ensure that guarding effectiveness is not compromised by poor design or materials.
Even when a machine has guards, operators can still be injured if those guards fail under stress, vibration, or improper installation.
OSHA requires that guards maintain their protective function under all normal operating conditions.
Key Design Requirements
- Strength and Durability: Guards must resist impact, vibration, and deformation caused by routine use and environmental conditions.
- Secure Mounting: Guards must be firmly attached and cannot be easily removed, bypassed, or displaced during normal operation.
- Ergonomic Function: Guards should be designed to allow normal operation and maintenance without creating awkward or unsafe postures.
- Visibility: When feasible, guards should permit observation of the operation to ensure quality and alignment without removal.
- No New Hazards: Guard edges and surfaces must be smooth, free from sharp corners, and designed not to introduce new pinch points or catch hazards.
Acceptable Guarding Examples
- Fixed metal guards enclosing belts, pulleys, and gears.
- Transparent guards made of high-strength polycarbonate for visibility and impact resistance.
- Interlocked access doors that automatically shut off the machine when opened.
- Barrier guards preventing reach into moving parts while allowing visual monitoring.
Common Compliance Issues
- Guards that loosen or vibrate during machine operation, reducing protection.
- Materials that crack, warp, or deteriorate under heat or chemical exposure.
- Improperly designed openings that allow finger or hand access to moving parts.
- Guards that must be removed to complete normal adjustments or feeding.
Best Practices for Compliance
- Select guard materials suitable for the specific machine environment (e.g., metal for impact resistance, polycarbonate for visibility).
- Incorporate secure mounting brackets and fasteners that prevent accidental removal.
- Follow design guidelines for minimum safe distances between guard openings and hazard zones.
- Inspect and test guards periodically for wear, looseness, and stability under normal vibration and operation.
- Document guard designs, materials, and inspections as part of your facility’s machine safety program.
Why OSHA 1910.212(a)(3)(iii) Is Important
Even the best guarding concepts fail if the physical construction is inadequate.
OSHA 1910.212(a)(3)(iii) ensures that all guards are engineered for real-world performance, protecting operators and maintenance personnel from the severe hazards of rotating, cutting, or crushing machinery.
By emphasizing design integrity, this section reinforces the need for reliable, tested, and properly installed guarding systems that remain effective throughout the life of the equipment.
FAQ
What is the main goal of 1910.212(a)(3)(iii)?
To ensure guards are designed and built to prevent operator injury under normal operating conditions, providing long-term durability and protection.
Can a temporary or makeshift guard meet this requirement?
No. Guards must be of permanent construction or equivalent strength, securely mounted, and designed for continuous use.
Do materials matter for compliance?
Yes. Guards must be made of materials that withstand the machine’s operational stresses and environmental factors without failure.
B11.22 – Turning Centers & Automatic Numerically Controlled Turning Machines
B11.22 — Safety Requirements for Turning Centers & Automatic Numerically Controlled Turning Machines
The B11.22 standard applies to machine tools classified as automatic or numerically controlled turning machines—including modern turning centers—that machine bar stock or blanks on single or multiple spindles with automatic or semi-automatic loading, tool changes, and work-handling operations. It addresses safety across the full lifecycle: design, construction, installation, operation, maintenance, modification, dismantling, and transport.
Scope & Application
B11.22 covers hazards associated with rotating workpieces and spindles, chucking devices, live tooling, automatic loading and bar-feed systems, and part ejection. It focuses on safeguarding the point of operation and hazardous motion during production, setup/changeover, maintenance, and other special modes. Integrated manufacturing systems are outside the scope of this document and are addressed by separate system-level standards.
Key Safety Topics
- Guarding and enclosures: Interlocked or fixed guards for the cutting zone, rotating spindles, live tools, and chip/ejecta containment.
- Automatic loading and bar-feed: Protection against stock whip, pinch points, unintended access, and ejection hazards during automatic cycles.
- Control systems and modes: Clear mode selection (automatic, setup, maintenance), safe start/restart logic, emergency stop functions, and interlock integrity.
- Risk assessment and responsibilities: Defined roles for suppliers, integrators, and users to identify hazards, implement risk-reduction measures, verify performance, and maintain documentation.
- Modification and retrofit: Rebuilds or conversions must not degrade safety performance; safeguarding must be reviewed and validated after changes.
Why It Matters
Turning centers combine high rotational speeds, automatic handling, and multi-axis motions that can create severe risks such as entanglement, contact, ejection, and unintended motion. Applying B11.22 helps organizations engineer effective safeguards, validate safety-related controls, and maintain safe procedures for production and maintenance tasks.
Practical Implementation Tips
- Use a task-based risk assessment to identify exposure during production, setup, tool change, and maintenance.
- Verify enclosure integrity and interlock function; confirm chip and fragment containment at maximum spindle speed and material conditions.
- Evaluate bar-feed and parts-handling interfaces for access control, guarding, and emergency stop coverage across the machine boundary.
- Document mode selection logic and ensure reduced-speed/hold-to-run features where necessary during setup or teaching.
- Train operators and maintenance personnel on hazards unique to rotating stock, chuck changes, live-tool operations, and automated cycles.
B11.6 – Manual Turning Machines (Lathes) With or Without Automatic Control
B11.6 — Safety Requirements for Manual Turning Machines (Lathes) With or Without Automatic Control
The B11.6 standard (ANSI B11.6-2022) specifies safety requirements for the design, construction, installation, operation, maintenance, modification, transport and dismantling of horizontally or vertically oriented spindle turning machines (commonly called lathes) that are manually controlled or may include automatic control capabilities. :contentReference[oaicite:0]{index=0}
Scope & Application
This standard applies to manual turning machines in which the workpiece is clamped and rotated while the cutting tool is rather stationary (i.e., the cutting force is from the workpiece). These machines may include automatic features (such as feed drives or tool turret indexing) but do *not* include fully automatic part-handling or bar-feed mechanisms or automatic tool changers — those machines fall under separate standards. :contentReference[oaicite:1]{index=1}
Key Safety Topics Addressed
- Point of operation & rotating parts guarding: Guarding or protective devices for rotating spindles, chucks, work-holding, live tooling, and removal of chips or swarf to prevent contact, entanglement or ejection hazards. :contentReference[oaicite:2]{index=2}
- Machine control modes & automatic control interface: Safe transitions between manual operation, automatic feed, tool change or manual set-up modes; ensuring that automatic or semi-automatic features do not expose operators to hazards. :contentReference[oaicite:3]{index=3}
- Feed, back-gauge and tool systems: Safe design of workpiece feeding, tool turret or system, and back-gauge motions to prevent contact during automatic or manual operations. :contentReference[oaicite:4]{index=4}
- Lifecycle responsibilities: The standard assigns defined roles for machine builders/suppliers, integrators/modifiers and users/owners for all phases of the machine life cycle — design, installation, commissioning, operation, maintenance, modification and decommissioning. :contentReference[oaicite:5]{index=5}
- Risk assessment & modification/retrofit: The standard emphasizes that machines modified, rebuilt or converted must be treated as essentially new with respect to risk assessment, safeguarding and verification. :contentReference[oaicite:6]{index=6}
Why It Matters
Turning machines (lathes) remain ubiquitous in manufacturing and metalworking. They involve hazards from rotating workpieces, chucks, live tools, swarf and chips, feed/back-gauge motion, automatic features and manual operator interaction. Adhering to B11.6 helps ensure these machines are designed, installed and maintained in accordance with recognized engineering safety practices, supports risk reduction and strengthens a machine-safety program. :contentReference[oaicite:7]{index=7}
Implementation Tips
- Perform a task-based risk assessment considering manual turning, automatic feed modes, tool change settings, maintenance, set-up and clean-up operations.
- Ensure aftermarket or retrofit features (e.g., tool turrets, automatic feed) do not compromise guard integrity or operator protective distance.
- Verify that guards around the spindle, chuck and rotating workpiece prevent access during operation and that swarf/chip ejection zones are managed.
- Audit control mode logic to ensure safe state transitions — for example, automatic feed should not occur with operator hazard exposure; manual mode should have proper safeguards for setup/maintenance.
- Include records of maintenance, modification, training of operators and documentation of risk assessments and safeguarding changes — treating any machine changes as a redesign from safety perspective.




